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Abstract—A group of mobile jammers is tasked with disrupt-
ing the overall communication of a static radio network. The
jammers are assumed to have limited jamming capabilities,
such that the jamming effect is constrained to a disk area
around the jammer. Radios within the jamming zone will be
disrupted and the jamming intensity depends on the relative
distance between the radio and the jammer. To disrupt the
communication network, a dynamic coverage control based
jamming strategy is developed, where the jammers coordinate
their motion and cooperatively guarantee that every radio in the
network is accumulatively disrupted up to a desired jamming
level over time. It is further assumed that each jammer has a
limited communication capability. Two jammers can only share
jamming information when they stay within a certain distance.
To ensure consistent jamming coordination, motion control laws
are developed for jammers to perform effective jamming while
preserving network connectivity among jammers. An appealing
feature of the current work is the use of mobile jammers to
dynamically disrupt the overall communication network, which
enables cooperative jamming over large scale networks by using
a limited number of mobile jammers.

I. INTRODUCTION

Wireless communication networks are widely used in
commercial, industrial, and military applications. Due to the
openness of the wireless medium, such networks are vul-
nerable to interference, failure, and attack. Various jamming
techniques have been developed to disrupt different layers
of the protocol stack in wireless networks, such as causing
errors in the reception of data in the physical layer [1],
blocking transmission of data at the MAC layer [2], or taking
advantage of the periodicity of many routing protocols and
performing jamming at the network layer [3]. However, most
existing results only focus on jamming local communications
on one link or at one radio, resulting in degraded global
jamming performance, since networks often have multiple
paths connecting radios and an alternative route could be
used if certain links are jammed.

To disrupt the overall communication of a network, static
placement of jammers is considered in [4] and [5] to block
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network traffic flow by partitioning the network into discon-
nected subnetworks. The approaches developed in [4] and
[5] exploit topological properties of network connectivity
and physical locations of the radios, yielding better jamming
performance in blocking information exchange between ra-
dios. However, since the number of jammers is generally
predetermined and often limited, there is no guarantee that
the network could be partitioned into several disconnected
subnetworks, especially if large scale networks or networks
with dense connectivity are considered.

In the present work, a static radio network is considered
and a limited number of mobile jammers is tasked with
the objective of disrupting the overall communication of
the radio network. Each jammer is assumed to have a
limited jamming capability, modeled as a disk area around
the jammer. Only radios within the jamming zone are dis-
rupted by the jammer, and the jamming intensity depends
on the relative distance between the radio and the jammer.
Clearly, it is trivial to disrupt a communication network
if a sufficient number of jammers are available such that
the union of jamming zones of all jammers can completely
cover the entire network. If fewer jammers are provided,
but still sufficient to partition the network into disconnected
subnetworks as discussed in the results of [4] and [5],
communication disruption is still guaranteed. To relax the
constraints on the number of jammers, in this work, mobile
jammers are considered, where the number of jammers is not
large enough to partition the communication network as in
[4] and [5]. Therefore, it is desirable to take advantage of the
jammer mobility and develop a cooperative motion strategy
to dynamically disrupt the the overall communication in the
wireless network.

Coverage control is a type of cooperative control for
a multi-agent system to continuously monitor an area of
interest. Coverage control typically consists of either static or
dynamic coverage control. Static coverage control generally
addresses the problems of optimal placement of sensors to
cover a region of interest (cf. [6]–[8], to name a few), while
dynamic coverage control (cf. [9]–[12]) focuses on searching
an area sufficiently well over time. Particularly, in dynamic
coverage control, mobile sensors are tasked to perform
effective coverage, where every point in the area of interest
is ensured to be visited for a sufficient amount of time.
Inspired by the effective coverage developed in [9]–[12], the
jamming strategy considered in the current work is to disrupt
the overall communication by ensuring every radio in the
network is accumulatively disrupted by the group of mobile
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jammers up to a preset jamming level over time. Since the
radios form a connected network, from the point of view of
graph topology, certain radios have more important roles than
others in terms of communication and information relay. For
instance, nodes with the most connections in the network or
nodes whose removal can lead to disconnected networks are
obviously more critical than other nodes. Hence, each radio is
associated with a different jamming level that indicates how
much jamming effort should be imposed, and motion control
laws are developed for the jammers to cooperatively ensure
every radio is disrupted up to the desired jamming level. It
is assumed that each jammer has a limited communication
capability. Two jammers can only communicate when they
are within a certain distance. The motion of jammers is
then further constrained to preserve network connectivity
among the jammers while performing effective jamming. In
[13] and [14], distributed control algorithms are develeoped
to maximize area coverage by a mobile robot network
while ensuring reliable communication between the robots.
Other representative results on motion planning for mobile
networks with preservation of network connectivity include
[15]–[21].

Compared to the results such as [1]–[3], our jamming
strategy focuses on disrupting the overall communication
in a network, rather than jamming a single communication
link. As discussed in [4] and [5], the network partition based
jamming strategy requires expensive computation effort and
is not always guaranteed to partition the network by a given
number of jammers, especially for large scale networks. In
contrast, the use of mobile jammers in the current work
allows disruption of a larger network by taking advantage
of its mobility. Moreover, the developed jamming strategy
can dynamically disrupt the overall communication network,
making it difficult for the network to respond and recover
from jamming attacks.

II. PROBLEM FORMULATION

Consider M static radios distributed in a two-dimensional
compact workspaceW and let pj ∈ R2 denote the position of
radio j ∈ {1, . . .M} withinW . The radios are assumed to be
homogeneous with equal transmit power and omnidirectional
antennas, which form a connected communication network
modeled by an undirected graph GT = (VT , ET ), where the
vertex set VT represents the radios and the edge set ET
represents wireless communication links between radios.

A group of N mobile jammers is tasked to disrupt the
communication of the network GT . The jammers are assumed
to move according to the single-integrator kinematics

ẋi = ui, i = 1, . . . , N, (1)

where xi ∈ R2 denotes the position of jammer i, and ui ∈ R2

represents its control input.
It is assumed that jammers have complete knowledge of

the radios’ positions. Jammers can disrupt wireless com-
munication in various ways such as reducing the signal-to-
interference ratio at the receiver or overloading the front end

of a receiver. In the present work, each jammer is assumed
to have a limited jamming zone Si, encoded as a disk area
with radius r ∈ R+ centered at jammer i. Since radio signals
generally follow an exponential path-loss model, inspired by
[9], the distance based jamming intensity is characterized by1

Ji (xi (t) , pj) =

{
Mp

r4

(
sij − r2

)2
, sij ≤ r2,

0, sij > r2,
(2)

where sij (t) , ‖xi (t)− pj‖2, and Mp ∈ R+ is a peak
jamming capability.

Let int (Si), ∂Si, and ext (Si) denote the interior, bound-
ary, and exterior of jamming zone Si, respectively. Clearly,
Ji (xi, pj) > 0 if pj ∈ int (Si) and Ji (xi, pj) = 0 if
pj ∈ ∂Si ∪ ext (Si). The jamming model in (2) indicates
that the jamming intensity achieves its peak value when
jammer i coincides with radio j and monotonically degrades
as jammer i moves away from radio j, which indicates that
the jamming becomes less effective as radios move closer to
the boundary of the jamming zone. Note that the subsequent
development is not limited to the particular jamming model
proposed in (2). Other functions such as sigmoid functions
or hyperbolic tangent functions with appropriate modification
can also serve as a qualified jamming model.

Due to the limited jamming capability, the jammers are
required to cooperatively disrupt the overall communication
of the target network GT . The interaction among jammers
(i.e., communication and information exchange) is modeled
by an undirected graph G (t) = (V, E (t)) , where V rep-
resents the set of jammers and E (t) represents the set of
communication links between jammers. It is further assumed
that each jammer has a limited communication capability
encoded by a disk area with radius R, which implies that two
jammers can only exchange information within a distance of
R. Hence, the edge (i, k) ∈ E between jammer i and k is
established only when their relative distance ‖xi − xk‖2 is
less than R. Let Ni = {k ∈ V| (i, k) ∈ E (t)} denote the
neighbors of jammer i. The graph G is connected if there
exists a path connecting any two nodes in the graph.

An example problem scenario is illustrated in Fig. 1. A
network of 100 radios is deployed in a two-dimensional
plane, forming a connected communication network where
the dots represent the radios and the solid lines represent
the inter-radio wireless communication. The mobile jammers
are denoted by triangles and the shaded disks indicate their
limited jamming zones. Radios within the jamming zones
are under jamming attack and the disrupted communication
is indicated by dashed line.

The main objective in the present work is to develop
cooperative motion control laws for the jammers to guarantee
that every radio in the network is accumulatively disrupted
up to a desired jamming level over time. The jamming level
will be defined and discussed in detail in the subsequent

1The current work is based on the simplified distance-based jamming
model in (2). Additional work will consider more realistic communication
(e.g., path loss, shadowing, and multi-path fading) in jamming models based
on the results developed in [18]–[21].
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Figure 1. An example problem scenario, where three mobile jammers,
denoted by triangles, are tasked to disrupt the communication of a network
of 100 radios. The dots represent the radios and the solid lines indicates
the inter-radio wireless communication links. The shaded disks represent
the limited jamming zones. Radios within the jamming zones are under
jamming attack and the disrupted communication is indicated by dashed
lines.

section. It is assumed that the initial graph G (0) is connected.
To ensure information exchange among the jammers, the
jammers motion are further constrained to preserve network
connectivity of G while performing effective jamming.

III. EFFECTIVE JAMMING STRATEGY

The concept of effective coverage is originally developed
in the works of [9] and [10] for sensing a compact region.
Inspired by coverage control, the effective jamming strategy
in the current work is to drive the mobile jammers to ensure
every radio in the network GT is accumulatively disrupted
up to a desired level over time. Let φi (t; 0, xi (0)) denote a
trajectory of jammer i within a time interval [0, t] under the
controller ui in (1) with the initial condition xi (0) ∈ R2.
The effective jamming achieved by jammer i ∈ V over radio
j ∈ VT along the trajectory φi (t; 0, xi (0)) is defined as

Qi,j (φi, pj) ,
ˆ t

0

Ji (xi (τ) , pj) dτ, (3)

which quantifies the accumulated jamming imposed by jam-
mer i on radio j over [0, t].

Based on the individual jamming on radio j designed in
(3), the jamming on radio j by the entire group of jammers
is defined as

QV,j (φ1, . . . , φN , pj) ,
ˆ t

0

∑
i∈V

Ji (xi (τ) , pj) dτ, (4)

where QV,j is a function of the trajectories of all jammers
over [0, t].

Due to different roles of radios in the network GT ,
certain radios are more important than others in terms of
communication and information relay. For instance, from the
view of graph topology, the set of nodes whose removal can
lead to disconnected networks are obviously more critical
than other nodes, since the communication within GT can be
maximally disrupted by jamming such set of nodes, resulting
a partitioned communication network. Hence, according to
its importance, each radio j is associated with a desired
jamming level Q∗j ∈ R+ that indicates how much jamming
effort should be imposed on it. The objective of effective
jamming over radio j is achieved if QV,j ≥ Q∗j .

To maximally disrupt the communication, critical radios
are supposed to have larger values of jamming level (e.g.,
larger QV,j for critical radio j), which indicates that more
jamming effort should be spent on critical radios. In this
initial work, the desired jamming levels Q∗j for all j ∈ VT are
simply assumed known and predetermined. Ongoing work is
to determine the radio jamming level based on the trade-
off between overall jamming performance and control effort
of jammers. For instance, graph topology properties in [22]
could be exploited to determine a subset of nodes whose
removal can maximally impact the communication of a given
network.

Consider a non-negative and twice differentiable penalty
function h (w) = (max {0, w})3 with its first derivative
h′ (w) = dh

dw = 3 (max {0, w})2 and second derivative
h′′ (w) = 6 max {0, w}. The objective of disrupting the
overall communication of GT is then formulated as

e (t) =
∑
j∈VT

h
(
Q∗j −QV,j

)
. (5)

Clearly, e (t) = 0 in (5) indicates mission completion since
every radio j is accumulatively disrupted to its desired level
Q∗j over [0, t] (i.e., QV,j (t) ≥ Q∗j for ∀j ∈ VT ). Note that
h (w) = 0 when w ≤ 0, which also implies in (5) that no
penalty is incurred if QV,j > Q∗j (i.e., more jamming effort
is spent on radio j), since it results in more jamming over
the communication.

Based on the Leibniz integral rule, the time derivative of
Qi,j and QV,j is obtained as

Q̇ij = Ji (xi (t) , pj)

from (3) and

Q̇V,j =
∑
i∈V

Ji (xi (t) , pj) (6)

from (4). Using (6), the time derivative of e (t) is

ė (t) = −
∑
j∈VT

h′
(
Q∗j −QV,j

)(∑
i∈V

Ji (xi (t) , pj)

)
. (7)

Since h (w) = h′ (w) = 0 when w ≤ 0 and
h (w) and h′ (w) are all positive when w > 0, the
term

∑
j∈VT h

′ (Q∗j −QV,j) → 0 in (7) indicates that
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∑
j∈VT h

(
Q∗j −QV,j

)
→ 0 (i.e., e (t) → 0). However,

ė (t)→ 0 does not indicate that e (t)→ 0 since ė (t) could be
zero when

∑
i∈V Ji (xi, pj) = 0 while h′

(
Q∗j −QV,j

)
6= 0,

and this condition may occur, for instance, when radio j does
not fall in the jamming zone of any jammer i ∈ V from (2).

Inspired by [11], a variant of ė (t) is used in the subsequent
development.

Lemma 1. Let a variant of ė (t) be defined as

Vc (φ (t)) ,
∑
j∈VT

h′
(
Q∗j −QV,j

)(∑
i∈V

Ji (xi, pj) + α

)
(8)

where φ (t) = {φi}, i ∈ V , representing the set of tra-
jectories of all jammers, and α is a positive constant. The
designed Vc (φ (t)) ≥ 0 and Vc (φ (t)) = 0 if and only if
the objective of effective jamming over GT is achieved (i.e.,
QV,j ≥ Q∗j for ∀j ∈ VT ).

Proof: The term
∑

i∈V Ji (xi, pj) + α in (8) is strictly
positive, since α > 0 and Ji ≥ 0 from (2). Hence,
Vc (φ (t)) ≥ 0, since h′ (·) is non-negative. When effec-
tive jamming is achieved, QV,j ≥ Q∗j for ∀j ∈ VT ,
which implies that h′

(
Q∗j −QV,j

)
= 0 for ∀j ∈ VT and

thus Vc (φ (t)) = 0. The converse is easily verified, since
Vc (φ (t)) = 0 implies that h′

(
Q∗j −QV,j

)
= 0 for ∀j ∈ VT

since
∑

i∈V Ji (xi, pj) + α is strictly positive.
Lemma 1 shows that Vc in (8) can be treated as an error

function to indicate whether the objective of effective jam-
ming is achieved. It is worth pointing out that Vc itself dose
not contain ẋi. Since the time derivative of Vc contains ẋi,
the control design for ẋi in the the subsequent development
is based on the insights of Lyapunov based convergence
analysis. To develop the motion control laws for the jammers,
the following assumptions are required.

Assumption 1. The jamming information QV,j , ∀j ∈ VT ,
is available to each jammer i ∈ V , as long as G (t) remains
connected.

Assumption 2. The jammers are restricted within the com-
pact workspace W and, at any time instant, at least one
radio falls in the jamming zone of a jammer during effective
jamming (i.e.,

∑
i∈V Ji (xi, pj) 6= 0 for at least one radio j).

To coordinate the motion of jammers to disrupt the net-
work GT , Assumption 1 indicates that jammers are able to
communicate and share information on how the radio j is
disrupted by all jammers. Section IV will discuss how the
motion of jammers will be constrained to ensure the un-
derlying graph G (t) is connected when performing effective
jamming. Assumption 2 indicates that jammers will not move
out ofW or move into a certain configuration that will cause∑

j∈VT
∑

i∈V Ji (xi, pj) = 0. Note that Assumption 2 could
be relaxed, especially if a densely populated radio network
or jammers with large jamming radius are considered.

Theorem 1. Provided that Assumption 1 and Assumption 2

hold, the following motion control law

ūi = −
∑

pj∈int(Si)

dJi
dsij

h′
(
Q∗j −QV,j

)
(xi − pj) , (9)

ensures every jammer i with kinematics ẋi = ūi converges
to the set

Ψ ,
{
xi ∈ R2,∀i ∈ V

∣∣QV,j ≥ Q∗j ,∀pj ∈ int (Si)
}
. (10)

Proof: Since Vc (φ (t)) ≥ 0 and Vc (φ (t)) = 0
only when the effective jamming is accomplished based on
Lemma 1, consider Vc (φ (t)) as a Lyapunov candidate.

Based on the definition of Ji in (2),

dJi
dt

=
dJi
dsij

2 (xi − pj)T ẋi (11)

where

dJi
dsij

=

{
2Mp

r4

(
sij − r2

)
, sij < r2,

0, sij ≥ r2.
(12)

Taking time derivative of Vc (φ (t)) and using (6) and (11)
yields

V̇c =−
∑
j∈VT

h′′
(
Q∗j −QV,j

)∑
i∈V

Ji

(∑
i∈V

Ji + α

)

+
∑
j∈VT

h′
(
Q∗j −QV,j

)(∑
i∈V

dJi
dsij

2 (xi − pj)T ẋi

)
,

which can be rewritten as

V̇c =−
∑
j∈VT

h′′
(
Q∗j −QV,j

)∑
i∈V

Ji

(∑
i∈V

Ji + α

)

+ 2
∑
i∈V

∑
j∈VT

dJi
dsij

h′
(
Q∗j −QV,j

)
(xi − pj)T

 ẋi.

(13)
Since dJi

dsij
= 0 for pj ∈ ∂Si ∪ ext (Si) , j ∈ VT , based on

(12), (13) can be simplified as

V̇c =−
∑
j∈VT

h′′
(
Q∗j −QV,j

)∑
i∈V

Ji

(∑
i∈V

Ji + α

)

+ 2
∑
i∈V

 ∑
pj∈int(Si)

dJi
dsij

h′
(
Q∗j −QV,j

)
(xi − pj)T

 ẋi.

(14)
Substituting the controller (9) into (14) yields

V̇c =−
∑
j∈VT

h′′
(
Q∗j −QV,j

)∑
i∈V

Ji
∑
i∈V

(Ji + α)

− 2
∑
i∈V

∥∥∥∥∥∥
∑

pj∈int(Si)

dJi
dsij

h′
(
Q∗j −QV,j

)
(xi − pj)

∥∥∥∥∥∥
2

,

(15)
which indicates that V̇c ≤ 0, since h′′ (·) and Ji are all non-
negative functions.
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Based on Assumption 2, there exists at least one radio
disrupted by a jammer at any time instant. For any ra-
dio j that falls in the jamming zone of a jammer, it is
true that

∑
i∈V Ji (xi, pj) > 0. If V̇c = 0, it must have

h′′
(
Q∗j −QV,j

)
= 0 from the first line in (15), which indi-

cates all radios j with pj ∈ int (Si), ∀i ∈ V , will be disrupted
to a desired jamming level, i.e., QV,j ≥ Q∗j . The second
line in (15) will also be zero, since h′′

(
Q∗j −QV,j

)
=

h′
(
Q∗j −QV,j

)
= 0 if QV,j ≥ Q∗j , .which indicates that

the largest invariant set for V̇c = 0 is

Ψ =
{
xi,∀i ∈ V|QV,j ≥ Q∗j ,∀pj ∈ int (Si)

}
.

Since dJi

dsij
and QV,j in (9) are functions of jammers trajec-

tories only, ẋi = ūi, i = 1, . . . , N, are autonomous systems.
LaSalle’s invariance principle in [23] can then be invoked to
conclude that the system will converge to the set Ψ.

IV. CONNECTIVITY MAINTENANCE

The cooperative jamming strategy designed in (9) is based
on Assumption 1, which requires a connected communication
network G (t) so that jammers can exchange the jamming
information QV,j , ∀j ∈ VT . However, due to limited com-
munication capabilities, the motion of jammers can lead to a
disconnected network G (t), resulting in failure of sharing
jamming information. In addition to performing effective
jamming, the motion of jammers is further constrained to
preserve network connectivity in this section.

Consider an escape region for each jammer i, defined
as the outer ring of the communication area with radius
r, R − δ < r < R, where δ ∈ R+ is a predetermined
buffer distance. Edges formed with any jammer k ∈ Ni

in the escape region are in danger of breaking. Inspired by
our earlier results in [15] and [16], to ensure the existing
link (i, k) ∈ E (t) is connected, consider a penalty function
Cik (xi, xk)

Cik (xi, xk) ,

(
min

{
0,
dik − (R− δ)2

dik −R2

})2

, (16)

where dik , ‖xi − xk‖2 . In (16), the non-negative function
Cik (xi, xk)→∞ as dik → R2 (i.e., the edge (i, k) is about
to break) and Cik (xi, xk) monotonically decreases to zero
as their inter-distance dik decreases to (R− δ)2.

The partial derivative of Cik (xi, xk) with respect to xi is
then given by

∂Cik

∂xi
=

 0, dik ≤ (R− δ)2

Ξ, (R− δ)2 < dik < R2

undefined, dik = R2.

, (17)

where

Ξ , 4 min

{
0,
dik − (R− δ)2

dik −R2

} (
(R− δ)2 −R2

)
(xi − xk)

T

(dik −R2)
2 .

The following theorem will show that if two jammers i and k
are connected initially (i.e., (i, k) ∈ E (0)), they will remain

connected, i.e., dik < R2, which ensures that the undefined
∂Cik

∂xi
at dik = R2 will not introduce any discontinuity to the

system.

Theorem 2. Let Φ denote

Φ ,
{
x ∈ R2N

∣∣ dik < (R− δ)2 ,∀ (i, k) ∈ E
}
,

where x =
[
xT1 , . . . , x

T
N

]T
. Jammers with kinematics (1) are

ensured to converge to Ψ ∩ Φ by following the control law

ui = ūi + u∗i , (18)

where ūi is the control law for effective jamming designed
in (9) and u∗i is defined as

u∗i = −
∑
k∈Ni

∂Cik

∂xi
(19)

to preserve network connectivity.

Proof: Consider a Lyapunov function candidate

V = Vc (φ (t)) + Vp (x (t)) ,

where Vc is from (8) and Vp is defined as

Vp (x (t)) ,
∑
i∈V

∑
k∈Ni

Cik (xi, xk) . (20)

Taking time derivative of V and using (14) and (18) yields

V̇ = V̇c + V̇p, (21)

where V̇c in (21) is

V̇c =−
∑
j∈VT

h′′
(
Q∗j −QV,j

)∑
i∈V

Ji

(∑
i∈V

Ji + α

)
− 2

∑
i∈V

ūTi (ūi + u∗i ) ,

(22)

and V̇p in (21) is computed from (20) as

V̇p =
∑
i∈V

∑
k∈Ni

(
∂Cik

∂xi
ui +

∂Cik

∂xk
uk

)
=
∑
i∈V

∑
k∈Ni

(
∂Cik

∂xi
ui +

∂Cki

∂xk
uk

)
,

(23)

where the fact that Cik = Cki from (16) is used. Note that,
for undirected graphs, it is always true that∑

i∈V

∑
k∈Ni

∂Cki

∂xk
uk =

∑
i∈V

∑
k∈Ni

∂Cik

∂xi
ui. (24)

Using (24) and ∂Cik

∂xi
= −∂Cik

∂xk
from (17), V̇p in (23) can be

further simplified as

V̇p =
∑
i∈V

(
2
∑
k∈Ni

∂Cik

∂xi

)
ui

= −
∑
i∈V

2 (u∗i )
T

(ūi + u∗i ) .

(25)
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Substituting (22) and (25) into V̇ yields

V̇ = −
∑
j∈VT

h′′
(
Q∗j −QV,j

)∑
i∈V

Ji

(∑
i∈V

Ji + α

)
−
∑
i∈V

2 (ūi + u∗i )
T

(ūi + u∗i ) ,

(26)

which indicates that V̇ ≤ 0. Since Cik → ∞, if an edge
(i, k) is disconnected, the bounded V indicates that every
existing edge in G (t) is preserved.

Following similar analysis in Theorem 1, the first line in
(26) is zero only when all jammers will converge to Ψ, which
also indicates that ūi = 0 for ∀i ∈ V. To ensure V̇ = 0 in
(26), note that u∗i = 0, ∀i ∈ V, if all jammers are in the set Φ,
since ∂Cik

∂xi
= 0 from (17). Hence, all jammers will converge

to the set Ψ ∩ Φ, which indicates the network connectivity
is preserved while every radio within the jamming zone of
jammers are ensured to be effectively jammed.
Remark 1. Theorem 2 indicates that, under the controller ui
in (18), the communication of GT will be disrupted until,
for any jammer i, every radio j within its jamming zone
Si (i.e., pj ∈ int (Si)) has been disrupted up to a desired
jamming level with QV,j ≥ Q∗j (i.e., convergence to the
set Ψ). However, it does not guarantee that every radio
in the network GT will be effectively disrupted, since the
controller ui only ensures effective jamming of radios within
Si, ∀i ∈ V . In addition, the controller ui vanishes when every
radio j with pj ∈ int (Si) has been effectively jammed and
Φ holds, which indicates that jammer i stops moving even
if there exists a radio k with pk ∈ ext (Si) that has not been
effectively jammed. To ensure effective jamming of the entire
network GT , following similar ideas in [10], a perturbation
control law could be applied to drive jammer i to its nearest
radio that has not been effectively jammed, if jammer i stops
moving and the entire network GT has not been effectively
jammed. Once the radio j with QV,j < Q∗j falls in Si,
the jamming control (18) will be nonzero and could be
applied again to perform effective jamming. Repeating this
procedure, if necessary, can eventually ensure that every
radio j ∈ VT has QV,j ≥ Q∗j .

V. CONCLUSION

A dynamic coverage control based effective jamming
strategy is developed in this work to disrupt the overall
communication of a static radio network, where the mobile
jammers coordinate their motion and cooperatively guarantee
that every radio in the network is accumulatively disrupted
up to a desired jamming level over time. In the current
paper, the radio jamming level is predetermined. Future work
will focus on dynamically determining the jamming level
based on graph topology properties. For instance, the network
partition based strategy in our previous works of [4] and [5]
could be modified to indicate the desired jamming levels for
different nodes in the network, since nodes that are critical
to network connectivity demands more jamming effort on
them.
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